The role of specific surface loop regions in determining the function of the imipenem-specific pore protein OprD of Pseudomonas aeruginosa.
نویسندگان
چکیده
Pseudomonas aeruginosa OprD is a specific porin which facilitates the uptake of basic amino acids and imipenem across the outer membrane. In this study, we examined the effects of deletions in six of the proposed eight surface loops of OprD on the in vivo and in vitro functions of this protein. Native OprD formed very small channels in planar lipid bilayers, with an average single-channel conductance in 1.0 M KCl of 20 pS. When large numbers of OprD channels were incorporated into lipid bilayer membranes, addition of increasing concentrations of imipenem to the bathing solutions resulted in a progressive blocking of the membrane conductance of KCl, indicating the presence of a specific binding site(s) for imipenem in the OprD channel. From these experiments, the concentration of imipenem value of resulting in 50% inhibition of the initial conductance was calculated as approximately 0.6 microM. In contrast, no decrease in channel conductance was observed for the OprDdeltaL2 channel upon addition of up to 2.4 microM imipenem, confirming that external loop 2 was involved in imipenem binding. Deletion of four to eight amino acids from loops 1 and 6 had no effect on antibiotic susceptibility, whereas deletion of eight amino acids from loops 5, 7, and 8 resulted in supersusceptibility to beta-lactams, quinolones, chloramphenicol, and tetracycline. Planar lipid bilayer analysis indicated that the OprDdeltaL5 channel had a 33-fold increase in single-channel conductance in 1 M KCl but had retained its imipenem binding site. The disposition of these loop regions in the interior of the OprD channel is discussed.
منابع مشابه
Outer Membrane Protein D Gene in Clinical Isolates of Pseudomonas Aeruginosa and its Role in Antibiotic Resistance
Background & Objectives: Pseudomonas aeruginosa is a common cause of nosocomial infection. OprD protein is a specific protein regulating the uptake of carbapenem antibiotic. Loss of OprD is the main mechanism of Pseudomonas Aeruginosa resistance to carbapenem. In this study, the presence of OprD gene is investigated in isolated Pseudomonas Aeruginosa in burn patients of Ghotboddin hospital in S...
متن کاملRole of putative loops 2 and 3 in imipenem passage through the specific porin OprD of Pseudomonas aeruginosa.
Mutant proteins with eight amino acid deletions in putative surface loops 2 and 3 of the imipenem-specific porin OprD of Pseudomonas aeruginosa failed to reconstitute imipenem susceptibility in an oprD-deficient background. The loop 3 deletion prevented the ability of imipenem to inhibit KCl conductance through the OprD channel, as previously shown for a loop 2 deletion. This suggests that both...
متن کاملMembrane topology and site-specific mutagenesis of Pseudomonas aeruginosa porin OprD.
Pseudomonas aeruginosa OprD is a 420-amino-acid protein that facilitates the uptake of basic amino acids, imipenem and gluconate across the outer membrane. OprD was the first specific porin that could be aligned with members of the non-specific porin super-family. Utilizing multiple alignments in conjugation with structure predictions and amphipathicity calculations, an OprD-topology model was ...
متن کاملAnalysis of two gene regions involved in the expression of the imipenem-specific, outer membrane porin protein OprD of Pseudomonas aeruginosa.
A Tn501 mutant of Pseudomonas aeruginosa resistant to imipenem and lacking the imipenem-specific outer membrane porin protein OprD was isolated. The mutation could be complemented to imipenem susceptibility and OprD-sufficiency by a cloned 6-kb EcoRI-PstI fragment of DNA from the region of chromosome of the wild-type strain surrounding the site of Tn501 insertion. However, this fragment did not...
متن کاملNegative regulation of the Pseudomonas aeruginosa outer membrane porin OprD selective for imipenem and basic amino acids.
Pseudomonas aeruginosa OprD is a specific porin which facilitates the uptake of basic amino acids and imipenem, a carbapenem antibiotic. Resistance to imipenem due to the loss of OprD is an important mechanism for the loss of clinical effectiveness. To investigate the negative regulatory mechanisms influencing oprD expression, a gene upstream of the coregulated mexEF-oprN efflux operon, designa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 178 11 شماره
صفحات -
تاریخ انتشار 1996